USER’S MANUAL

M-SQ6
- 1500 RPM -

Marine diesel generating set 230V / 50Hz
Digital Diesel Control
CONTENTS

1 INTRODUCTION

1.1 General

1.2 Service and maintenance

1.3 Guarantee

1.4 Liability

1.5 Identification

1.5.1 General

1.5.2 Identification plate

2 INFORMATION

2.1 Safety

2.1.1 General

2.1.2 Electrical safety

2.1.3 Earth insulation failures

2.1.4 Installation

2.1.5 Operation

2.1.6 Fire and explosion

2.1.7 Chemicals

2.2 Transport, lifting and storage

2.3 The M-SQ6

2.3.1 Features

2.3.2 Remote control

2.3.3 Documentation

2.3.4 Accessories included in the standard delivery

2.4 Components

2.4.1 Main components to identify

2.4.2 Generator control panel

2.4.3 Remote control panel

2.5 Technical Information

2.5.1 AC alternator

2.5.2 Engine

2.5.3 Digital Diesel Control system

2.5.4 Battery charger

2.5.5 Alarms and shut down

2.5.6 Control

2.5.7 Remote control

2.5.8 Hour counter

2.5.9 Load indicator

2.5.10 Fuel specification

2.5.11 Oil information

2.5.12 Cooling liquid

2.5.13 Technical data

2.5.14 Wiring codes and colours

2.5.15 Control wiring layout

2.5.16 Electrical diagram 230 V AC / 50 Hz

2.5.17 Diagram electronic governor (optional)

3 OPERATION

3.1 General

3.2 Operating Instructions

3.2.1 Summarised operating instructions (daily use)

3.2.2 Extended operating instructions
CONTENTS

4 MAINTENANCE ... 22
 4.1 Alternator ... 22
 4.2 Engine .. 22
 4.2.1 Preliminary instructions .. 22
 4.2.2 Bleeding fuel lines ... 22
 4.2.3 Valve clearance ... 22
 4.2.4 Replacing fuel filter ... 22
 4.2.5 Replacing oil filter .. 22
 4.2.6 Readjustment of V-belt .. 23
 4.3 Regular maintenance .. 23
 4.3.1 Maintenance schedule ... 24
 4.3.2 Putting out of service .. 25

5 TROUBLESHOOTING ... 26
 5.1 Alternator / electrical faults .. 26
 5.1.1 General .. 26
 5.1.2 Trouble shooting table .. 26
 5.2 Engine faults .. 27
 5.2.1 General .. 27
 5.2.2 Trouble shooting table .. 28
 5.2.3 Warnings .. 30
 5.2.4 Service address .. 30
 5.3 Special procedures alternator .. 31
 5.3.1 Residual voltage check / excitation procedure .. 31
 5.3.2 Testing rotary rectifier diodes ... 31
 5.3.3 Winding resistant values .. 31
 5.3.4 Meggering .. 31
 5.4 Special procedures engine ... 31
 5.4.1 Setting the RPM ... 31
 5.4.2 Adjusting valve clearance and retightening the cylinder head bolts. 31
 5.4.3 Measuring exhaust backpressure .. 32
 5.4.4 Disassembling instructions ... 33

6 SPARE PARTS LIST .. 34

MAINTENANCE LOG ... 36
INTRODUCTION

1 INTRODUCTION

1.1 GENERAL
The M-SQ6 Marine Diesel Generating set is manufactured and marketed by WhisperPower.
It is important to read this manual before installing and operating the generating set. Both safety and durability rely very much on the correct identification, installation and a good understanding of ratings, features, design, maintenance and operation procedures.
The information, specifications, illustrations and statements contained within this publication are given with our best intentions and are believed to be correct at the time of going to press.

All of the specifications, provisions and instructions contained in this manual apply solely to standard versions of the WhisperPower M-SQ6 generating set.

This manual is valid for the following models:

<table>
<thead>
<tr>
<th>Part number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>41105005</td>
<td>M-SQ6 230V 1500rpm</td>
</tr>
<tr>
<td>41105006</td>
<td>M-SQ6 230V 1500rpm -ungrounded</td>
</tr>
</tbody>
</table>

For other models see other manuals available on our website: www.whisperpower.com.

Our policy is one of continued development and we reserve the right to amend any technical information without prior notice.
 Whilst every effort is made to ensure the accuracy of the particulars contained within this publication neither the manufacturer, distributor, or dealer in any circumstances shall be held liable for any inaccuracy or the consequences thereof.

WARNING
A warning symbol draws attention to special warnings, instructions or procedures which, if not strictly observed, may result in damage or destruction of equipment, severe personal injury or loss of life.

DANGER
This danger symbol refers to electric danger and draws attention to special warnings, instructions or procedures which, if not strictly observed, may result in electrical shock which will result in severe personal injury or loss of life.

1.2 SERVICE AND MAINTENANCE
Regular service and maintenance should be carried out according to the directions in this manual. For service and maintenance one can appeal to the manufacturer or the dealers.

1.3 GUARANTEE
WhisperPower guarantees that this generating set has been built according to good workmanship, according to the specifications in this manual and according to European Community safety regulations.
During production and prior to delivery, all of our generating sets are tested and inspected.

This generating set’s correct operation is subject to guarantee. The period and conditions of this guarantee are laid down in the general conditions of delivery as registered with the Chamber of Commerce and Industries for the North of the Netherlands number 01120025 and are available on request. The guarantee period is two years, limited to 1000 running hours. Some aspects of our guarantee scheme are given here in more detail:

Guarantee does not cover failures that are caused by misuse, neglect or a faulty installation.

Example 1. Faulty installation
Seawater entering the engine is the most common cause of damage to combustion engines in boats (both to propulsion and generator engines). The entry of water must be avoided under all conditions. Be aware that the conditions in blue water sailing can be extreme. Refer to the installation manual for instructions but remember these are for guidance only as many factors influence the installation of a generator. The ultimate responsibility will always be with the owner to ensure a safe and compliant installation. If in doubt ask!

DAMAGE CAUSED BY THE INGRESS OF WATER IS NEVER COVERED BY GUARANTEE

Example 2: Misuse
Long term running with no load or too little load can cause the exhaust to get choked with soot or carbon. Cleaning the exhaust is not covered by guarantee.

Example 3: Neglect
Sometimes the seal of the raw water pump starts leaking. Mostly this begins with a little drip and slowly gets worse. Regular visual inspection of the generator is necessary to prevent damage to occur from a leaking water pump. When one find serious damage after weeks of neglect guarantee claims will not be honoured.
Example 4: Neglect
Whisper generators have an option for an auto start/stop mode or interval mode.
WhisperPower cannot be held responsible for damage caused by the unattended running generator.

Guarantee means that faulty parts are repaired or replaced free of charge. If necessary the whole generator unit will be exchanged. Labour necessary to complete repairs on board a vessel executed by an authorized service engineer is covered, but is limited to a reasonable number of hours and reasonable rates in relation to the actual repair work that has to be done.
Travel expenses and travel hours are not covered. Also not covered is the labour required to take a generator out of a boat or for reinstallation. There is no cover for labour needed to get access to the generator, for example to remove equipment or bulkheads etc.
Goods to be delivered under guarantee will be invoiced.
Only after the faulty goods are returned will the invoice be credited. Payment in advance may be required or guaranteed by credit card. If after the faulty goods are returned, it is indicated that the failure was not covered by guarantee a credit will not be issued. For example if a Printed Circuit Board is returned with clear damage caused by seawater, guarantee will be refused.
Freight costs to deliver spares by normal mail or carriers is covered under guarantee. Special services like express mail, overnight delivery etc. are not covered. Taxes and duties are not covered. For shipments to remote off shore areas any additional costs incurred over normal carriage will be invoiced to the customer.
The cost for returning faulty goods is not covered under guarantee.

If any problem arises which could be subject of guarantee, procedures should be followed as described in the guarantee conditions, unauthorised repairs could lead to further damage and violate the guarantee conditions.

Should work take place, which is not in accordance with the guidelines, instructions and specifications contained in this user's manual and the supplementary installation manual, then damage may occur and the generating set may not fulfil its specifications. In all these cases the guarantee may become invalid. Use original spare parts only!

1.4 LIABILITY
WhisperPower does not accept responsibility for damage, injuries or casualties which are the result of operation of the generating set in specific conditions which brings dangers which could not be foreseen, or could be avoided by additional measures. WhisperPower does not accept liability for damage due to use of the generator, possible errors in the manuals and the results thereof.

Automatic start/stop
WhisperPower cannot be held responsible for damage caused by the unattended running generator using the auto-start/stop mode or interval mode.
1.5 IDENTIFICATION

1.5.1 General
Before using this generating set it is very important to identify the set correctly. To communicate for service or ordering parts it is also essential to correctly identify the generating set. Also for the daily operation of the generating set it is necessary that the operator knows the correct specifications.

1.5.2 Identification plate
All required identification data are on the identification plate. For location of the identification plate see figure 1.

The identity of the generating set is given by the SERIAL NUMBER. When this number is available the manufacturer can trace the specifications of the generating set. On the identification plate are also some basic features of the set:

2 POWER
The identification plate gives the nominal maximum continues load in kVA (= kW) calculated with power factor one. When calculating a load one should always take into account the power factor or \(\cos \phi \) of this load. The power should never exceed the nominal power as shown on the identification plate. Power is rated at an ambient temperature of 40°C and a seawater temperature of 25°C. For higher temperatures the generating set has to be derated.

3 VOLTAGE shows the nominal voltage. This voltage should be within the specified tolerance at the nominal frequency.

4 FREQUENCY is shown in Hz and is determined by the speed of the engine (RPM). 50 Hz correlates with 1500 rpm.

5 CURRENT shows the maximum current that is acceptable at the specified frequency, voltage and power factor.

6 WEIGHT shows the net dry weight (approximately) in kg. This is without fuel, oil, packing and external installation equipment

7 CE-marking: the “CE” symbol shows that the generating set is build according to European Community safety regulations. This includes the regulations regarding the safety of pleasure craft, safety of machinery, electric safety and electric magnetic compatibility (EMC) and other relevant directives.

Safety also relies on the installation, application and circumstances. See also the remarks in this manual under SAFETY

Before changing a factory setting you are advised to consult the manufacturer. When the generating set you have to identify is not new you have to take into account the possibility that former users may have changed the settings. Check the settings (voltage, frequency, rpm) when there is any doubt.
2 INFORMATION

2.1 SAFETY

2.1.1 General
When correctly installed and used in normal circumstances this generating set fulfils EC safety regulations. This generating set could be part of an installation or could be used in a way that additional regulations of the EC or other authorities have to be taken into account.

Circumstances could make it also necessary to take additional measures. Be aware of wet conditions and hazardous environments caused by explosive gases etc.

2.1.2 Electrical safety

The voltage of 230 Volt generated by this generating set is dangerous and if instructions and procedures are not strictly observed may result in electrical shock which will result in severe personal injury or loss of life.

- Check all wiring at least once a year. Defects, such as loose connections, burned cables etc. must be repaired immediately.

- Do not work on the electrical system if it is still connected to a current source. Only allow changes in your electrical system to be carried out by qualified electricians.

- Connection and protection must be done in accordance with local standards.

- Using the auto-start/stop (interval) mode the generator can start unexpectedly. When working on the electrical system, the 3 Amp fuse must be removed from the control panel and the battery plus cable must be removed from the battery.

Warning signs indicate parts which could be live.

2.1.3 Earth insulation failures
According to local regulations and depending on the application it could be necessary to take measures for protection against earth insulation failures.

In the standard delivery “neutral” and “ground” are not connected. To make a connection between “neutral” and “ground” could be necessary as part of a specific insulation failure protection system.

Small pleasure craft in Europe is submitted to The Recreational Craft Directive 94/25/EC. The guidelines of this directive refer to (ISO 13297).

When the installation complies with this standard the “neutral” and “ground” should be connected on the generating set.

Be aware that insulation protection systems can be different for different applications and even within the ship there could be different standards for different spaces. We did refer to the Recreational Craft Directive that applies to pleasure craft up to 24 m of length. Sometimes one has to comply with other standards such as the rules of certification societies like Lloyd’s Register of Shipping or Veritas, regulations for the protection of personal, building legislation, etc. It is of the greatest importance to have expert advice on this issue.

In all situations the transfer switches between shore, inverter and generator should switch both neutral and L1. Of course this is the case when using a WhisperSwitch.

2.1.4 Installation

Whisper generating sets are not self-contained and have to be properly installed in enclosed areas such as a machine room.

Installation includes measures to be taken to outlet exhaust fumes which contain carbon monoxide and are extremely dangerous. Carbon monoxide (CO) is an invisible odourless gas. Inhalation produces headache, nausea or death. Installation includes measures for proper ventilation, safe electric connections, safe installation of the starting battery, proper fitting of the cooling system and fuel pipes etc. Refer to the installation manual.
2.1.5 Operation
External moving parts like fans and V-belts are covered by the sound shield and therefore the M-SQ6 is very safe when the sound shield is closed.

Nevertheless take note of the signs on the generating set which show symbols in a triangle indicating danger.

When service has to be carried out while the engine is running, be aware of moving parts like V-belts.

- The generating set should be operated by authorised personnel only.
- Be aware of hot parts and especially parts of the exhaust system and the cooling system.
- If the generating set is unsafe, fit danger notices and disconnect the battery positive (+) lead so that it cannot be started until the condition is corrected.
- Do not attempt to operate the generating set with a known unsafe condition. Disconnect the battery positive (+) lead prior to attempting any repairs or cleaning inside the enclosure.
- Always consult the manual before carrying out maintenance.
- Do not change the settings without consulting the manufacturer. Keep a record of setting changes in this manual.

2.1.6 Fire and explosion

Fuels can be flammable. Proper handling limits the risk of fire and explosion.

- Avoid refilling the fuel tank while the engine is running. When oil or fuel is leaking do not use the generating set.
- Do not run the engine close to explosives or gasses.
- Hydrogen gas generated by charging batteries is explosive. Ensure for proper ventilation. Do not smoke or allow sparks, flames, or other sources of ignition around batteries.
- Keep a fire extinguisher on hand.

In case of fire do not open the sound shield. To avoid serious injury or death from fire shut down engines, generator sets and blowers. Break through the label which is indicated by BREAK THROUGH HERE and then immediately discharge entire contents of gaseous portable fire extinguisher through this port. On the generating set this fire extinguisher port is indicated by the label as shown in figure 2.

- Poor electrical connections or using wiring which is not suited for the rated currents can cause overheating and possibly fire.

2.1.7 Chemicals

- Fuels, oils, coolants, and battery electrolyte can be hazardous to personnel if not treated properly. Do not swallow or have skin contact with these liquids. Do not wear clothing that has been contaminated by fuel or lubricating oil.
- Gaskets may be manufactured from asbestos. Particles of this material should not be inhaled as this may result in fatal diseases.
- On no account allow any unprotected skin to come into contact with the injector spray as the fuel may enter the blood stream with fatal results.
- Engines may be fitted with seals or O-rings manufactured from "viton" or similar material. When exposed to abnormal high temperatures in excess of 400°C an extremely corrosive acid is produced which cannot be removed from the
skin. If signs of decomposition are evident, or if in doubt, always wear disposable heavy duty gloves.

2.2 TRANSPORT, LIFTING AND STORAGE

![Warning symbol]

When lifting the generating set avoid any risk of personal injuries, do not stand under the generating set.

- Use soft slings to avoid damage
- On the engine are two hoist eyes which can be used to take the generator out of the capsule. They can also be used to lift the complete generating set including the capsule.
- After transporting the generating set check for damage before installation.
- Long term storage can have detrimental effects on engine and alternator. The engine should be put through an engine preservation procedure. (Refer to the maintenance chapter)
- The alternator windings tend to condense. To minimise condensation, store the generating set in a dry and warm storage area.
- After removing the generating set from long term storage perform an insulation check. (Refer to the alternator maintenance paragraph for procedures)
- While the battery is stored it should be recharged every 12 weeks.

2.3 THE M-SQ6

2.3.1 Features

This generating set includes a diesel engine which is connected by close coupling to an alternator in a sound attenuated capsule. The set is mounted on a steel base frame and mounted securely on anti-vibration mounting pads to the capsule base. All cables and hoses are guided through the capsule’s sides. The set is not self-contained and is only operable after proper installation using additional accessories and installation materials. Installation accessories are listed in the installation manual and are available through the supplier of the generating set. The full automatic Digital Control is based on microprocessor technology. Several automatic start/stop functions can be programmed and monitored (refer to Digital Diesel Control user’s manual).

2.3.2 Remote control

The full automatic remote control panel including 15 m cable comes as standard with the Whisper generating set.

2.3.3 Documentation

Included in the delivery is:
- This user’s manual (number: 40200331)
- An installation manual (number: 40200461)
- A user’s manual for DCC (number: 40200261).
- A quick reference guide for DDC (number 40200275)

Not included in the standard delivery but available as options are:
- Parts manual; number: 40200182
- Workshop manual; number: 40200171

However in this manual there is a list of important parts for maintenance and spare parts as well as a chapter on maintenance and problem solving.

2.3.4 Accessories included in the standard delivery

- Expansion tank, hose and fittings
- Special hose connector for measuring exhaust backpressure (refer to paragraph 5.4.3)
2.4 COMPONENTS

2.4.1 Main components to identify

Figure 3: Front view main components M-SQ6

01 Fuel injection pump
02 Fuel injector (3x)
03 Glow plug (3x)
04 Alternator (12VDC)
05 Engine oil dipstick
06 Coolant drain plug
07 Oil sump hand pump (optional)

Figure 4: Front view main components M-SQ6

01 Fuel injection pump
02 Fuel injector (3x)
03 Glow plug (3x)
04 Alternator (12VDC)
05 Engine oil dipstick
06 Coolant drain plug
07 Oil sump hand pump (optional)
10 Air cleaner element
11 Control panel
12 Fuses
13 Digital Diesel Control (DDC)
14 Identification plate
15 Hoist eye front
16 Injection pump air bleeding screw
17 Engine speed adjustment screw
18 Fuel solenoid
19 Raw water pump
20 Fuel lift pump
21 Engine oil filter
Figure 5: Rear view main components M-SQ6

Cooling water injection bend
Temperature switch exhaust
Heat exchanger
Start motor solenoid
Start motor
Rubber engine mounting
Fuel in Ø8mm
Battery negative (–)
Battery positive (+)
Fuel out Ø8mm
Raw water inlet
V-belt
Engine coolant pump
Exhaust manifold (water-cooled)

Figure 6: Rear View main components M-SQ6

Temperature switch
Thermostat housing
Filler cap engine oil
Filler cap engine coolant
Rocker cover
Hoist eye rear
Expansion tank
Bypass cooling water out
Bypass cooling water in
Generator
Exhaust hose Ø40mm
AC power output
Remote control
Engine air intake
2.4.2 Generator control panel

Figure 7: Control panel

2.4.3 Remote control panel

Figure 9: Digital diesel remote control panel

2.5 TECHNICAL INFORMATION

2.5.1 AC alternator
The single phase alternator is directly coupled, one bearing, brushless, rotating field design, four poles (1500 RPM) and self-regulating. Residual magnetism causes a small voltage over the stator windings and allows a current to flow in the windings, which is magnified because of the feedback effect between rotor and stator. The field windings in the rotor are short-circuited over a diode to rectify the current. A capacitor over an additional winding in the stator which is at an angle with the power-winding keeps the voltage stable within 5 % at the specified rpm and provides voltage fall off with speed, preventing over-excitation at low engine speeds and softening the effect of load switching to relieve the burden on the engine.

Further technical data on the design of the alternator can be found in drawings and diagrams in this manual.

2.5.2 Engine
The M-SQ6 generating set is based on the Mitsubishi L3E 3 cylinder diesel engine. The engine is indirectly injected. The engine is water cooled and the cooling liquid is cooled by a heat exchanger and raw water. The heat exchanger and all other parts which are in direct contact with the raw (sea) water are made of seawater resistant material like naval brass and gunmetal.

The engine has been specially adapted for the WhisperPower application and is very different from the standard engine supplied for industrial applications!

2.5.3 Digital Diesel Control system
The standard electrical engine control system is 12 Volt negative earth, non earth return (ungrounded) is available as optional. Check your identification data to determine which system is applied. The system is designed according to the "energise to run" system. The Digital Diesel Control is a very advanced microprocessor based full automatic system. Besides automatic start the system offers many monitoring options. Refer to the separate Digital Diesel Control user’s manual.

The microprocessor unit is located in the black box on top of the alternator

2.5.4 Battery charger
On the engine is an alternator generating 40 Amp 12V. This current is rectified to charge the battery. The voltage is regulated at ±14.4V.

2.5.5 Alarms and shut down
In the event of malfunctioning this will be indicated by the failure light, details will be shown on the display and the engine will be shut down. There are three functions
guarded: oil pressure, oil temperature and exhaust temperature. Exhaust temperature too high indicates the cooling water to be blocked. All alarm switches are closed when no malfunction occur. A contact is cut in the event of an alarm. This means that the generating set will not work when the alarm switches are broken or there is a loose wire. The system therefore is intrinsically safe. The panel will display details about the alarm.

2.5.6 Control
The generating set can be operated by push buttons on the panel on the alternator or by the remote control. By pushing the START button the control system is activated and will start the engine automatically. Pushing the STOP button will stop the engine and the electrical system will be deactivated.

2.5.7 Remote control
All wiring connections from the remote control to the board are made by plug in connectors. An intermediate communication cable is in the standard supply. If necessary an optional longer 8 wire communication cable can be connected if the standard length does not suit the required distance. Numerous remote control units can be put in parallel by using the connectors on the back of the units. (Refer to installation instructions)

2.5.8 Hour counter
The remote control offers several timer functions that helps to schedule maintenance.

2.5.9 Load indicator
On the remote control the load will be indicated on the display and by the LED-bar. The load is measured by a current transformer on the alternator.

2.5.10 Fuel specification
The engine must only be used with diesel fuel oil which conforms to the standards for use in modern diesel engines. Fuel free from water and contaminants is of the utmost importance.

2.5.11 Oil information
1 Specification:
The engine must be run on heavy duty lubricating oil meeting the requirements of API class CF, CF-4, CH-4, CI-4 or CI 4 plus.

It is very important to use the correct oil specification. Very often local oil suppliers recommend a higher class, because they assume that a higher class is allowed. This is not the case. One should not follow these recommendations. Using the wrong specification will cause high oil consumption.

2 Oil viscosity:
We recommend a multigrade oil 10W40.

3 Oil capacity:
Excluding the oil filter the content of the crankcase is 3.6 l. Including the oil filter it is 4.1 l. Note that the engine may contain some residual oil due to testing at the factory. While filling, check the lubricating oil level by means of the engine oil dipstick. Do not overfill with lubricating oil as this may have a detrimental effect on engine performance.

4 Oil pressure
- Minimum at idle 98 Kpa (1 kgf/cm² - 14 psi) (1 bar).
- Normal at 1500 rpm ±250 Kpa (2.5 kgf/cm² - 35 71 psi) (2.5 bar).

2.5.12 Cooling liquid
The engine is cooled by cooling liquid. The capacity of this system of the M-SQ6 is 3.5 litres.

Always use coolant which is compatible with aluminium components of the cooling system. Do not mix coolants with different kinds of chemical compound, as this may cause congelation of the coolant. In case of doubt refresh the content of the entire cooling system. Use only long-life type G12+ cooling liquid in order to minimize maintenance.

We recommend not using water but cooling liquid that is marketed for the use in combustion engines. Cooling liquid protects the engine against frost to minus 25° C. Also it protects the engine block against corrosion. One can fill the engine via the filling cap on the exhaust manifold. Fill up till the level is just below the filling cap. When the engine is on temperature the liquid will expand and the redundant liquid will be pressed into the expansion tank. This tank has to be filled up till the mark. When cooling liquid is not available clean fresh water could be used with an additive of anti-freeze. When using water with anti-freeze the right mixture has to be calculated according to the information of the supplier of the anti-freeze. When the
cooling is based on keel cooling or radiator cooling the capacity of these coolers and piping has to be taken into account calculating the right mixture. The cooling liquid in the engine is pressurised and has a boiling point above 100° C. The temperature switch in the thermostat housing switches at 110° C. When keel cooling or radiator cooling is applied the cooling system is not pressurised. There should be a special cap on the manifold without valves leaving the connection to the expansion tank open. Refer to the manual on keel cooling and radiator cooling.

2.5.13 Technical data

<table>
<thead>
<tr>
<th>GENERAL</th>
<th>Model</th>
<th>M-SQ6</th>
</tr>
</thead>
<tbody>
<tr>
<td>RPM</td>
<td>1500</td>
<td></td>
</tr>
<tr>
<td>Alternator</td>
<td>water cooled, synchronous</td>
<td></td>
</tr>
<tr>
<td>Engine</td>
<td>Mitsubishi diesel, model L3E</td>
<td></td>
</tr>
<tr>
<td>Number of cylinders</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Displacement</td>
<td>952 cm³</td>
<td></td>
</tr>
<tr>
<td>Bore X stroke</td>
<td>76x70 mm</td>
<td></td>
</tr>
<tr>
<td>Combustion air consumption</td>
<td>0.9 m³/min.</td>
<td></td>
</tr>
<tr>
<td>Continuous power engine</td>
<td>5.7 kW</td>
<td></td>
</tr>
<tr>
<td>Cooling system</td>
<td>indirect cooling by raw water, 8-12 l/min.</td>
<td></td>
</tr>
<tr>
<td>Cooling water pump</td>
<td>PTO driven WhisperPower self-priming impeller pump</td>
<td></td>
</tr>
<tr>
<td>Fuel lift pump engine</td>
<td>electric pump (12 V DC), additional pump available upon request</td>
<td></td>
</tr>
<tr>
<td>Starting battery (optional)</td>
<td>60-90 Ah 12V</td>
<td></td>
</tr>
<tr>
<td>Fuel consumption</td>
<td>1.5-2.5 litre/hour, load dependent</td>
<td></td>
</tr>
<tr>
<td>Control</td>
<td>Digital Diesel Control including automatic start/stop</td>
<td></td>
</tr>
</tbody>
</table>

ELECTRICAL SPECIFICATIONS	Output voltage	230V/50Hz alternating current (AC) single phase
	Output rating	5.7 kVA =5.7kW at power factor cos phi = 1
	Voltage tolerance	± 5%
	Frequency tolerance	± 5%
	Optional electronic governor	± 1%
	Alternator	brushless, four pole, synchronous
	Voltage regulation:	Capacitor (AVR optional)

MECHANICAL SPECIFICATIONS	Supply includes	Sound shield with steel base, mounted on rubber anti-vibration mounts. (Generator set without sound shield is optional)
	Dimensions h x w x d	80.5 x 52.5 x 58.0 cm
	Colour	metallic silver / grey
	Weight	240kg including sound shield
	Max. installation angle	25 degrees
	Standard supplies	Digital remote panel (+15 m cable), fuel filter, fuel lift pump, user and installation manuals
	Optional mobile	Installation kits, mobile (vehicle) version, non earth return (ungrounded), spare part kits
2.5.14 Wiring codes and colours

<table>
<thead>
<tr>
<th>number</th>
<th>colour</th>
<th>cable code no cross section</th>
</tr>
</thead>
<tbody>
<tr>
<td>battery > starter motor</td>
<td>red</td>
<td>25 mm²</td>
</tr>
<tr>
<td>starter motor > DCC</td>
<td>red</td>
<td>6 mm²</td>
</tr>
<tr>
<td>starter motor > LCP</td>
<td>red</td>
<td>2,5 mm²</td>
</tr>
<tr>
<td>battery > ground</td>
<td>black</td>
<td>25 mm²</td>
</tr>
<tr>
<td>ground > LCP ground (GND)</td>
<td>black</td>
<td>2,5 mm²</td>
</tr>
<tr>
<td>DDC > glow plug</td>
<td>brown</td>
<td>4 mm²</td>
</tr>
<tr>
<td>DDC > starter solenoid</td>
<td>yellow</td>
<td>2,5 mm²</td>
</tr>
<tr>
<td>LCP > fuel lift pump +</td>
<td>grey</td>
<td>1,5 mm²</td>
</tr>
<tr>
<td>LCP > fuel lift pump –</td>
<td>black</td>
<td>1,5 mm²</td>
</tr>
<tr>
<td>DDC > LCD</td>
<td>grey</td>
<td>1,5 mm²</td>
</tr>
<tr>
<td>DDC > oil pressure switch</td>
<td>purple</td>
<td>1 mm²</td>
</tr>
<tr>
<td>LCP > oil pressure switch</td>
<td>purple/black</td>
<td>1 mm²</td>
</tr>
<tr>
<td>DDC > oil temperature switch</td>
<td>blue</td>
<td>1 mm²</td>
</tr>
<tr>
<td>LCP > oil temperature switch</td>
<td>blue/black</td>
<td>1 mm²</td>
</tr>
<tr>
<td>DDC > exhaust temperature switch</td>
<td>blue/green</td>
<td>1 mm²</td>
</tr>
<tr>
<td>LCP > exhaust temperature switch</td>
<td>blue/pink</td>
<td>1 mm²</td>
</tr>
<tr>
<td>DDC > fuel solenoid (hold)</td>
<td>green</td>
<td>1,5 mm²</td>
</tr>
<tr>
<td>DDC > fuel solenoid (pull)</td>
<td>pink</td>
<td>1,5 mm²</td>
</tr>
<tr>
<td>DDC > fuel solenoid (com.)</td>
<td>black</td>
<td>1,5 mm²</td>
</tr>
<tr>
<td>B+ terminal alternator > starter motor</td>
<td>red</td>
<td>6 mm²</td>
</tr>
<tr>
<td>DDC >R terminal alternator</td>
<td>white</td>
<td>1,5 mm²</td>
</tr>
<tr>
<td>DDC > L terminal alternator</td>
<td>orange</td>
<td>1,5 mm²</td>
</tr>
<tr>
<td>DDC > current measuring transformer</td>
<td>black</td>
<td>1 mm²</td>
</tr>
<tr>
<td>DDC > current measuring transformer</td>
<td>red</td>
<td>1 mm²</td>
</tr>
<tr>
<td>DDC > LCP</td>
<td>black</td>
<td>1,5 mm²</td>
</tr>
<tr>
<td>DDC > LCP</td>
<td>red</td>
<td>1,5 mm²</td>
</tr>
<tr>
<td>DDC > generator AC output</td>
<td>brown</td>
<td>1 mm²</td>
</tr>
<tr>
<td>DDC > generator AC output</td>
<td>blue</td>
<td>1 mm²</td>
</tr>
</tbody>
</table>

DDC=Digital Diesel Control Unit
LCP=Local Control Panel
2.5.15 Control wiring layout

Figure 10: Electrical Diagram control wiring M-SQ6
2.5.16 Electrical diagram 230 V AC / 50 Hz

Figure 11: Electrical diagram 230V
2.5.17 Diagram electronic governor (optional)

In addition to the mechanical governor, the M-SQ6 can be equipped with an electronic governor. A governor keeps the speed (RPM=Rotations Per Minute) of the engine at a fixed value. The RPM of the engine correlates with the frequency of the electrical output (1500 RPM =50 Hz) of the alternator.

Under full load the RPM of the Whisper models that has only a mechanical governor can drop 75 RPM (=2.5 Hz) at full load and will go further down or collapse when further loaded. However the engines with the electronic governor will keep the RPM and frequency at the set value. As the voltage is related to the frequency, the voltage will be more stable as well.

The RPM represents power and the alternator performs better as well on a higher speed. Whisper models with an electronic governor will bring more power.

So the electronic governor offers three advantages: a more stable frequency and voltage and more power.

The electronic governor system contains two parts:

1. The actuator controls the engine speed. This actuator replaces the standard hold solenoid that is on all other mechanical controlled Whisper engines. The actuator controls the RPM directly on the fuel rack inside the fuel pump without levers and other mechanical transmissions.

2. A microprocessor keeps the speed at the set value by controlling the actuator. The microprocessor is programmed at the WhisperPower factory and many parameters are set to perform well. It should not be necessary to make adjustments. When adjustments are necessary this can only be done with the help of an interface to a computer and special software to get access to the microprocessor.

The WhisperPower electronic governor does not need a pickup device in the flywheel housing that counts the passing tooth of the flywheel and determines the exact RPM of the engine, because the processor uses the 50 Hz of the AC output voltage as a reference.
3 OPERATION

3.1 GENERAL

The generating set is operational after full installation and filling up with: fuel, engine lubricating oil and cooling liquid, connecting the battery to earth and connecting the digital remote control panel.

![Figure 13: Oil dipstick]

1. Maximum oil level
2. Minimum oil level

3.2 OPERATING INSTRUCTIONS

3.2.1 Summarised operating instructions (daily use)

Routine "pre-start" checks:
1. Check oil level (refer to fig. 13).
2. Water inlet (all valves open).
3. Power source selector switch (off/shore power/generator power). Switch to power source switch "OFF", or switch off all consumers in the usual way. If a WhisperSwitch is installed, this operates automatically.
4. Switch on battery switch (when installed).

Starting:
Push the start button to initiate the full automatic starting procedure. You can monitor the procedure on the display.

In operation checks:
1. Check for abnormal noise or vibration
2. Check the voltage
3. Check sea water flow at exhaust outlet
4. Power source selector switch (off/shore power/generator power). Switch to power source generator. If a WhisperSwitch is installed, this operates automatically.
5. Before loading the generating set up to maximum, have it run warm. Continuous load should be restricted to 70 % of maximum load.

Stopping generator:
1. Switch off all electrical devices (consumers). If the generating set has been running under full load for a longer period, do not shut it down abruptly. Reduce the electrical load to about 30% of the rated load and let it run for approx. 5 minutes.
2. Press the STOP button.
3. Close the inlet sea water cock.
4. Switch to another AC power source, if available. If a WhisperSwitch is installed, this is done automatically.

3.2.2 Extended operating instructions

Check when starting the first time or after a longer period of rest:

1. If there is any damage caused by transport or installation.
2. Check if the installation conforms to the installation instructions.
3. Ensure the generating set is free to turn without obstruction.
4. Check all hoses and hose connections for leaks.
5. Check all cables and cable end terminal connections.
6. Check the engine and generator mounting bolts.

Routine "pre-start" checks:
1. Check engine oil level.

The generator switches off in the event of insufficient oil-pressure. Even when the oil level is too low the oil pressure can be high enough. Do not run the generator with the oil below the lowest mark in the, because a smaller volume of oil will become contaminated considerably quicker than a larger volume. Therefore we recommend daily oil-checks.

Check oil level prior to starting the engine or at least 5 minutes after the engine has stopped.
2 Check sea water cocks. Do not forget the valve of the water outlet in case of a water/exhaust gas separator.
3 Check the water strainer.
4 Check for leaks.
5 Regularly check the siphon vent in the cooling water supply.
6 If no WhisperSwitch is used: Switch main Power Source Selector switch to “OFF” or switch off all devices.
7 Switch on the battery switch.

Starting the generator:
By pushing the start button briefly the electric system is activated, the fuel lift pump starts pumping and the starting procedure will begin (by pushing the Stop button the system is deactivated).
The first time starting up or after running out of fuel it could be necessary to prime the fuel system. (Refer to bleeding fuel system instructions in the maintenance chapter).

A restart protection prevents starting the engine when it is already running, which could cause damage.

In the event of starting problems (numerous attempts are made), close the sea-water inlet cock while cranking to prevent the outlet system and engine to fill up with water.

During the starting process, the cooling water pump is driven with the engine. The cooling water is discharged to the exhaust outlet, because the engine does not run, the exhaust pressure is not high enough to expel this water. Open the valve directly when the engine starts to prevent damaging the impeller. Water in the cylinder will cause serious damage to the engine. For instance; a bent piston rod or a cracked cylinder head. In fact water in the cylinder is the main cause for engine damage in pleasure craft.

Checks once the generator is in operation:
1 Check for abnormal noise or vibration.
2 Check the voltage.
3 Check coolant flow.
 Always check immediately after starting the generator if cooling water flows at the exhaust outlet. If this is not the case, check the cooling water pump. After having become acquainted with the generator you will be able to recognise the coolant flowing through the system by listening for the noise of the water which is expelled.

Be aware that especially in harbours the coolant water inlet can easily be blocked by floating objects.

4 Power source selector switch (off/shore power/generator power). Switch to power source generator. If a WhisperSwitch is installed, this operates automatically.

Before loading the generating set up to maximum, have it run warm. The first 50 hours of running the continuous load should be restricted to 70% of maximum load. Running for long periods at no load or light load in the first 50 hours can cause cylinder glazing and high oil consumption.

Engine load during longer operation:
Please ensure that the generating set is not overloaded. Overloading occurs when the electrical load (demand) is so high that the generator cannot be turned around properly by the diesel engine. Overloading causes the engine to run rough, while using oil and excessive fuel and producing soot by the exhaust. The engine can even stop.

The generator should therefore only be loaded at the maximum rated power for short periods (2-3 hours) only! The high peak current is meant for the ability to start electrical devices that need a high current for starting especially electric motors and compressors (from a still stand state).

In order to prolong the generating set’s life expectancy, the nominal electrical demand on the system should be about 70% or the rated generating set’s maximum load. Please note this when switching on your electrical devices! Nevertheless, the M-SQ6 is designed so as not to overheat, even under extreme conditions.

Do not run the generator for very long periods at no load or at very low load. When this is necessary do load the generator at least one hour in 10 hours for minimum 70%. Long term running at too low load will cause the exhaust to be choked by carbon.

Never remove the battery while the engine is running or any electrical cable while the battery is connected in the circuit. Only disconnect the battery with the engine stopped and all switches in “OFF” position.
Stopping the generating set:

1. Avoid stopping of the generator abruptly after a long period of operation at high load! Doing so, you avoid unnecessary thermal load to your generating set!
 Act as follows:
 Prior to switching off the generating set, decrease the generator load (i.e. turn off most electrical users) and let the generator run at low load for approx. 5 minutes to allow the engine to get properly cool (the influent sea water must flow through the system in order to cool the engine).
 If the generator is operating in a hot environment and you do not act as given above, the excessive heat in the engine can trip the "high temp" alarms. In that case, a restart of the engine is not possible for some time. It is also recommended to switch off electrical users prior to stopping the generator because of the voltage drop that occurs as the engine comes to a halt. Such voltage drops may cause damage to electric motors, compressors (in refrigerators or air conditioners etc.).

2. Press the STOP button.

3. Close the inlet sea water cock.

4. Switch to another 230V power source, if available. If a WhisperSwitch is installed, this is done automatically.

 If the engine is not running and ‘failure’ and ‘charging’ LED is blinking, reset by stop button, otherwise it will drain the start battery.
4 MAINTENANCE

4.1 ALTERNATOR
The alternator does not require any maintenance. Periodic inspection and cleaning is recommended, depending on environmental conditions. However when the alternator has been idle for a long period attention to winding condition is recommended. The condition of windings can be assessed by measurement of insulation resistance to earth. The CAPACITOR should be disconnected during this test. A 500V ‘megger’ or similar instrument should be used. The insulation resistance to earth of all windings should be in excess of 1.0 MΩ. Should the insulation resistance be less than this value, drying out the generator windings is essential. Drying out can be carried out by direct warm air from a fan heater or similar apparatus into the generator air inlets or outlets. All bearings are greased for life and not regreasable.

4.2 ENGINE

4.2.1 Preliminary instructions
All regular maintenance can be carried out when the enclosure is open. When oil and dirt has gathered in the enclosure measures have to be taken to avoid spilling oil and polluting the environment. The first service on the engine should be carried out after 50 hours of its life and after a major overhaul. In the first 50 hours the engine should receive special attention: Long periods of light or no load running in the first 50 hours may lead to cylinder glazing and high oil consumption.

For the same reason it is of the greatest importance to use the right oil specification.

The first time starting up or after running out of fuel it could be necessary to prime the fuel system.

4.2.2 Bleeding fuel lines
Ensure there is sufficient fuel. The system is self-bleeding. The first time starting up or after running out of fuel it could be necessary to prime the fuel system. Push the start button activating the electric system and activating the fuel pump. When more time is needed to bleed, push “start” and hold on the local control panel (so not on the remote panel) Hold as long as necessary to bleed the system. Retighten the bleed screw when no further air bubbles are expelled.

4.2.3 Valve clearance
When the engine is in cold condition both valves (inlet and outlet) should have a clearance between 0.25 mm. The adjustment has to be done at TDC (refer to § 5.4.2).

4.2.4 Replacing fuel filter
Filter change depends on contamination of the fuel, but should be done however, at least every 300 running hours. Before changing the filter, clamp off the supply line. Remove the hoses from filter and attach them on the new filter again. The arrow on the filter housing indicates the direction of the flow. A clogged filter results in a lack of output of the generating set.

4.2.5 Replacing oil filter
The oil filter is in front of the service side. Replacement has to be executed according to the schedule in this manual. Drain the oil using the sump pump and put some tissues under the filter.

Figure 14: Bleeding fuel lines 1 = Fuel bleeding screw
Figure 15: Oil filter replacement
A smear of oil has to be put on the seal of the filter before fitting the filter. The filter should be fastened manually: when the rubber touches the metal turn 3/4 further.

CHECK DAILY:
- Level cooling liquid
- Hoses for loose connections or deterioration.
- Water inlet filter.

AFTER FIRST 50 HOURS:
- Change oil and replace the oil filter. Have the engine run until it is on temperature and stop it. Replace the oil filter. Drain oil by the sump pump into a suitable retainer and fill up with fresh oil. Start the engine again and have it run for 5 minutes. Stop the engine again and pause for a few minutes to let the oil gather in the crankcase. Check the level again and add oil when necessary.
- Check and tighten nuts, bolts, and unions, paying particular attention to the fuel system.
- Observe the exhaust at the normal full load. The exhaust must be free from soot. Do not allow the engine to run with a dirty exhaust without investigating the cause as this may result in an expensive breakdown.
- Check air vent on a regular basis. When the air vent is not working properly the engine can fill up with water by siphoning. Water in the combustion chamber causes serious damage to the engine.
- Check and readjust V-belt.
- Check the electrical connections.

EVERY 150 HOURS:
- Change oil.
- Check the battery acid level (not applicable when WhisperPower batteries are used).
- Check battery terminals for corrosion
- Check and readjust V-belt
- Check impeller raw water pump (durability depends on the purity of the sea water. In sandy water and warm water wear will increase).

When replacing the impeller the gasket between the pump case and the cover should be replaced as well. So when ordering a spare impeller order a gasket as well. Remove the cover to get access to the impeller. Remove the old impeller with the help of two screwdrivers. Install the new impeller and add some grease. Turn the blades in the direction of rotation of the pump i.e. anti-clockwise looking at the impeller.
EVERY 300 HOURS:
- Replace the impeller of the raw water pump.
- Retighten the cylinder head bolts and adjust the valve clearance. (Refer to § 5.4.2).
- Replace the oil filter.
- Replace the fuel filter
 Replacement depends on the condition of the fuel. We recommend replacement every 300 hours. Isolate the fuel supply and change the element.

EVERY 1000 HOURS:
- Replace the V-belt.
- Retighten cylinder head bolts/adjust + valve clearance.

EVERY 2000 HOURS:
- Check lubricating oil pressure
- Clean and check or replace fuel injector nozzles and check injection pressure.
- Check the air filter element:
 The air is taken in via the cover on the alternator. Below this cover is a spongy material which filters the air and holds some electrical components which are cooled by the inlet air. This filter does not require regular maintenance. Only in very dusty circumstances this filter should be cleaned. The spongy material can be washed in solvent or replaced.
- Check the cooling system:
 The engine cooling liquid is indirectly cooled by raw water via a heat exchanger. The alternator is cooled by seawater which is pumped by the PTO driven impeller pump through the cooler elements in the generator housing. All parts of the cooling system are of corrosion free and seawater resistant materials such as brass and gunmetal. In case of gathering of dirt in the system it could be cleaned by compressed air. When overhauling the engine one could clean the parts thoroughly or replace.

4.3.1 Maintenance schedule

<table>
<thead>
<tr>
<th>Maintenance Item</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Check oil level</td>
<td>daily</td>
</tr>
<tr>
<td>Check water inlet filter</td>
<td>daily</td>
</tr>
<tr>
<td>Check the level of the cooling liquid</td>
<td>daily</td>
</tr>
<tr>
<td>Change oil and oil filter</td>
<td>after first 50 hours</td>
</tr>
<tr>
<td>Check and tighten nuts, bolts, etc.</td>
<td>after first 50 hours</td>
</tr>
<tr>
<td>Check exhaust</td>
<td>after first 50 hours</td>
</tr>
<tr>
<td>Check air vent</td>
<td>after first 50 hours</td>
</tr>
<tr>
<td>Check and readjust V-belt</td>
<td>after first 50 hours</td>
</tr>
<tr>
<td>Check electrical connections</td>
<td>after first 50 hours</td>
</tr>
<tr>
<td>Change oil</td>
<td>150 hours</td>
</tr>
<tr>
<td>Check battery</td>
<td>150 hours</td>
</tr>
<tr>
<td>Check air vent</td>
<td>150 hours</td>
</tr>
<tr>
<td>Check and readjust V-belt</td>
<td>150 hours</td>
</tr>
<tr>
<td>Check water pump impeller</td>
<td>150 hours</td>
</tr>
<tr>
<td>Replace water pump impeller</td>
<td>300 hours</td>
</tr>
<tr>
<td>Retighten cylinder head bolts and readjust valve</td>
<td>300 hours</td>
</tr>
<tr>
<td>clearance</td>
<td></td>
</tr>
<tr>
<td>Replace oil filter</td>
<td>300 hours</td>
</tr>
<tr>
<td>Replace fuel filter</td>
<td>300 hours</td>
</tr>
<tr>
<td>Retighten cylinder head bolts, adjust valve clearance</td>
<td>1000 hours</td>
</tr>
<tr>
<td>Replace the V-belt</td>
<td>1000 hours</td>
</tr>
<tr>
<td>Check lubricating oil pressure</td>
<td>2000 hours</td>
</tr>
<tr>
<td>Check injector and injection pressure</td>
<td>2000 hours</td>
</tr>
<tr>
<td>Check inlet air filter</td>
<td>2000 hours</td>
</tr>
<tr>
<td>Check cooling system</td>
<td>2000 hours</td>
</tr>
</tbody>
</table>

When the generator set runs less than 100 hours a year the oil should be changed yearly.
4.3.2 Putting out of service
When not using the generating set for a longer period it is recommended to execute an engine preservation procedure.

1. Clean the engine.

2. Loosen the fuel suction pipe and fuel return and put them in a can with preservation diesel fuel. Start the engine and run the engine warm.

3. Drain the hot engine oil and refill with preservation oil.

4. Stop the engine and take loose the inlet of the raw water pump. Drain the water from the water lock. Crank the engine having the raw water inlet sucking anti-freeze from a can until the pump, heat exchanger and manifold are filled.

5. The coolant can stay in the engine.

6. Disconnect the battery and store it in a place free of frost and dry and charge it regularly.

7. Close inlet- and outlet openings with tape.

8. Protect the generating set against the influences of bad weather conditions.

This method of preservation will be sufficient for 6 months. Repeat steps 2, 3, and 4, every 6 months. Change oil before using the engine again.
5 TROUBLESHOOTING

5.1 ALTERNATOR/ ELECTRICAL FAULTS

Beware of parts which are live!

Remove 3 Amp. Fuse in the control panel while working on the generator to prevent the engine from starting.

A failure code is displayed when a hardware failure at the generator is detected.

5.1.1 General

If any problem should occur, check basic conditions and examine all external wiring, switch gear and circuit breakers. Also check if measuring instruments give the correct value. If in doubt, measure directly on the alternator terminals with an independent instrument.

This should only be carried out by an experienced electrician. Check if the engine is running correctly at 1500 RPM (50 Hz) according to its settings and does as well under load.

A RPM drop of 1% at full load is acceptable. Therefore a no load setting should be at 1515 RPM = 50.5 Hz. Under no circumstances should the RPM under full load be below 1485 RPM = 49.5 Hz.

When the problem is in the RPM refer to the engine fault finding paragraph.

Digital Diesel Control system will help to indicate failures and display causes.

<table>
<thead>
<tr>
<th>Failure code</th>
<th>Problem</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMMUNICATION</td>
<td>Communication error between the panel and the generator</td>
</tr>
<tr>
<td>LOW START BAT</td>
<td>Starter battery voltage too low</td>
</tr>
<tr>
<td>ALTERNATOR</td>
<td>No output battery charging voltage</td>
</tr>
<tr>
<td>EXHAUST TEMP</td>
<td>Exhaust temperature is too high</td>
</tr>
<tr>
<td>WATER TEMP</td>
<td>Coolant temperature is too high</td>
</tr>
<tr>
<td>OIL PRESSURE</td>
<td>Oil pressure failure</td>
</tr>
<tr>
<td>AC VOLTAGE</td>
<td>Generator AC output voltage is either too high or too low</td>
</tr>
<tr>
<td>HIGH CURRENT</td>
<td>Generator is in overload</td>
</tr>
<tr>
<td>FREQUENCY</td>
<td>Output frequency of the generator is too low</td>
</tr>
</tbody>
</table>

5.1.2 Trouble shooting table

<table>
<thead>
<tr>
<th>PROBLEM</th>
<th>CAUSE</th>
<th>SOLUTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>No output (Voltage) at all</td>
<td>• Circuit breaker "off" or faulty fuse</td>
<td>Check switches and fuses and measure directly on the alternator to exclude external causes.</td>
</tr>
<tr>
<td></td>
<td>• Low engine RPM.</td>
<td>Check the engine RPM and adjust (refer to special procedures).</td>
</tr>
<tr>
<td></td>
<td>• Loss of residual magnetism.</td>
<td>Check the residual magnetism and flash the alternator (refer to special procedures).</td>
</tr>
<tr>
<td></td>
<td>• Capacitor loose or broken.</td>
<td>Check by independent excitation if the problem is in the capacitor or in the windings.</td>
</tr>
<tr>
<td></td>
<td>• Rotor diodes broken.</td>
<td>Check the diode in the rotor (refer to special procedures). The M-SQ6 has one diode in the rotor.</td>
</tr>
<tr>
<td>Generator output voltage too low when no load is on it (less than 210V/105V).</td>
<td>• No load at all or very low load.</td>
<td>Switch on a load and check voltage.</td>
</tr>
<tr>
<td></td>
<td>• Engine is not reaching the rated RPM.</td>
<td>Refer to special procedures to readjust RPM.</td>
</tr>
<tr>
<td></td>
<td>• Defective capacitor.</td>
<td>Check capacitor and replace if necessary (refer to special procedures).</td>
</tr>
<tr>
<td></td>
<td>• Defective diode</td>
<td>Check the diode in the rotor and replace (refer to special procedures).</td>
</tr>
<tr>
<td>Generator output voltage too low under load (less than 210V/105V). In no load condition it is ok</td>
<td>• Generator is overloaded.</td>
<td>Switch off a load; (part off) consumers.</td>
</tr>
<tr>
<td></td>
<td>• Engine is not reaching the rated RPM.</td>
<td>Refer to engine RPM problems</td>
</tr>
<tr>
<td></td>
<td>• Defective capacitor</td>
<td>Check capacitor and replace if necessary (refer to special procedures).</td>
</tr>
</tbody>
</table>
TROUBLESHOOTING

<table>
<thead>
<tr>
<th>PROBLEM</th>
<th>CAUSE</th>
<th>SOLUTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Generator voltage too high, (more than 245V/130V)</td>
<td>• Engine is running too fast (RPM too high).</td>
<td>Check engine speed and adjust (refer to special procedures).</td>
</tr>
<tr>
<td></td>
<td>• Over-energising due to defective capacitors</td>
<td>Check capacitor specification and replace capacitors if necessary.</td>
</tr>
<tr>
<td></td>
<td>• Presence of a strong capacitive load (leading power factor)</td>
<td>Compensate for this capacity and seek for experts advice (WhisperPower customers service).</td>
</tr>
<tr>
<td>Generator voltage fluctuates.</td>
<td>• Disturbances on the electrical system/user side.</td>
<td>Check if electrical load is fluctuating</td>
</tr>
<tr>
<td></td>
<td>• Engine runs irregularly.</td>
<td>When engine runs irregularly refer to section: “Engine runs irregularly”.</td>
</tr>
<tr>
<td>Generator is not able to start an electric motor</td>
<td>If the generator is unable to supply enough power to start an AC electric motor, this is usually because this motor draws too much current during starting</td>
<td>Check the electric motor’s current draw required for starting. This should not exceed the rated generator peak output current. This could be remedied by providing stronger capacitors to the motor or using a "soft-start". Inquire at your nearest WhisperPower dealer or directly at the manufacturer, WhisperPower in the Netherlands.</td>
</tr>
</tbody>
</table>

5.2 ENGINE FAULTS

![Warning](image)

Remove 3 Amp. fuse in the control panel while working on the generator to prevent the engine from starting.

5.2.1 General

Most electrical problems relating to Voltage or Frequency are due to wrong engine speed. Note that RPM and Hz are basically the same.

Use the problem solving table to find the cause of a wrong engine speed. When there is no obvious cause one can adjust the RPM (refer to special procedures).

When the engine is not cranking well, starting problems almost always originate from battery problems or poor battery cable connections.

When the engine is cranking, well starting problems almost always originate from lack of fuel or air bubbles in the fuel pipes.

When the engine does not start instantly, prolonged cranking can fill up the exhaust system with cooling water because of the water injected exhaust. When the water enters the cylinder through the valves this will bring severe damage to the engine. When the engine does not start and repeated cranking is necessary shut off the seawater inlet. Open the valve immediately after the engine has started.

A failure code is displayed when a hardware failure at the generator is detected.

### Failure code	Problem
COMMUNICATION | Communication error between the panel and the generator
LOW START BAT | Starter battery voltage too low
ALTERNATOR | No output battery charging voltage
EXHAUST TEMP | Exhaust temperature is too high
WATER TEMP | Coolant temperature is too high
OIL PRESSURE | Oil pressure failure
AC VOLTAGE | Generator AC output voltage is either too high or too low
HIGH CURRENT | Generator is in overload
FREQUENCY | Output frequency of the generator is too low
5.2.2 Trouble shooting table

<table>
<thead>
<tr>
<th>PROBLEM</th>
<th>CAUSE</th>
<th>SOLUTION</th>
</tr>
</thead>
</table>
| Diesel engine fails to crank, the starter makes clicking noises, or the engine cranks very slowly | • Almost certainly this is an electrical problem. Display will indicate "LOW START BAT"
• One other possibility is that the engine is locked by water in the cylinder or there is other severe damage. | Check on water in the cylinder and further damage by cranking. When there is water in the cylinder, then deactivate the control system, disconnect the battery, remove the glow plugs. Crank the engine to remove the water through the opening of the glow plugs. Check oil on the presence of water and change oil. Find out how the water did enter the cylinder (check the air vent). Take precautions to prevent it from happening again. When there is no mechanical malfunction the problem must be an electric malfunction. |
<p>| • Starter battery switched "OFF". | Check position of the battery switch and switch "ON". | |
| • Starter battery voltage insufficient (battery too weak). | Check battery voltage. Recharge the battery. Inspect battery terminals and cables for a good electrical connection (inspect against corrosion, tattered wires, etc.) | |
| • Faulty fuse on the control panel | Replace fuse | |
| • Wiring control system faulty | During the normal starting process, the battery voltage drops to 11V (with a fully charged battery). If the voltage does not drop during starting, the electrical connection is faulty. If the battery voltage drops lower than 11V, then the battery has been discharged too deep. | |
| • Starter broken | Repair the starter motor | |
| • To thick engine lubricating oil. | Change oil for a lower viscosity. | |
| Starter is turning engine smoothly, but engine fails to start | • Out of fuel or faulty fuel, water in the fuel. | Fill up with fuel or replace with better quality. |
| • Fuel solenoid is not opening (no "click" can be heard). | Check wire connections and circuitry to solenoid. (Refer to DC wiring diagram) | |
| • Fuel lift pump is not working. | Check fuel filter and fuel lift pump: clean or replace if necessary. | |
| • Fuel filter is blocked. | Bleed air from fuel system (refer to maintenance section). | |
| • Air in fuel lines. | Adjust valve clearance. | |
| • Wrong valve clearance. | Clean valves. Take off the injection bend and inspect the outlet port. When little rust in the port clean the valve by taking off the valve spring and rotate until rust is removed. When the outlet port is strongly affected by rust, the exhaust system is not properly installed (refer to paragraph 5.4.3). Contact WhisperPower service department for advice. | |
| • Low compression because of dirty valves. | Have the injector tested and cleaned if necessary. | |
| • Blocked injector. | Repair by WhisperPower service | |
| Engine runs irregularly. | • Unsuitable contaminated fuel | Fill up with fuel or replace by better quality. |
| • Lack of fuel. | Check fuel filter and fuel lift pump: clean or replace if necessary. | |
| • Choked fuel filter. | Check if electrical load is fluctuating | |
| • Disturbances on the electrical system/ user side. | Check and repair | |
| • Faulty fuel lift pump. | Check the air intake | |
| • Choked air filter. | Check the air intake | |
| • Lack of air. | Check the exhaust hose | |
| • Choked exhaust system, exhaust blocked, rubber exhaust hose kinked. | Bleed air from fuel system (refer to maintenance section). | |
| • Air in the fuel pipes | | |</p>
<table>
<thead>
<tr>
<th>PROBLEM</th>
<th>CAUSE</th>
<th>SOLUTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Faulty electronic governor (only if applied)</td>
<td>Replace faulty parts.</td>
<td></td>
</tr>
<tr>
<td>Blocked injector.</td>
<td>Have the injector tested and cleaned if necessary.</td>
<td></td>
</tr>
<tr>
<td>Wrong valve clearance.</td>
<td>Adjust valve clearance.</td>
<td></td>
</tr>
<tr>
<td>Temporarily hunting (this will disappear when engine has run in)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ongoing hunting caused by faulty electronic governor (only if applied)</td>
<td>Replace faulty parts.</td>
<td></td>
</tr>
</tbody>
</table>

Engine speed drops

<table>
<thead>
<tr>
<th>CAUSE</th>
<th>SOLUTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Faulty electronic governor (only if applied)</td>
<td>Replace faulty parts.</td>
</tr>
<tr>
<td>Too much oil.</td>
<td>Drain oil to proper level</td>
</tr>
<tr>
<td>Lack of fuel.</td>
<td>Check fuel supply system: fuel pump and filter.</td>
</tr>
<tr>
<td>Lack of intake air.</td>
<td>Check air intake.</td>
</tr>
<tr>
<td>Choked exhaust system, exhaust blocked, rubber exhaust hose kinked.</td>
<td>Check the exhaust system.</td>
</tr>
<tr>
<td>Generator overloaded</td>
<td>Reduce the electrical load (switch off some consumers).</td>
</tr>
<tr>
<td>Generator over energised.</td>
<td>Check that the proper capacitor type is installed and that it is connected correctly.</td>
</tr>
<tr>
<td>Defective generator (windings, bearings or other)</td>
<td>Generator must be sent to manufacturer for repair of damaged bearing or winding.</td>
</tr>
<tr>
<td>Damaged engine</td>
<td>Repair by WhisperPower service</td>
</tr>
</tbody>
</table>

Engine does not stop on command

<table>
<thead>
<tr>
<th>CAUSE</th>
<th>SOLUTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fuel solenoid is not switching off</td>
<td>Faulty Digital Diesel Control unit. Stop the engine manually by the stop handle. Check wire connections to stop solenoid. Check solenoid valve function. Replace if necessary</td>
</tr>
<tr>
<td>Loss of control</td>
<td></td>
</tr>
</tbody>
</table>

Engine exhaust smokes

<table>
<thead>
<tr>
<th>CAUSE</th>
<th>SOLUTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Light blue smoke - generally the result of light load</td>
<td>Increase load.</td>
</tr>
<tr>
<td>Heavy blue smoke - caused by lubricating oil: Overfull oil sump or worn cylinder bore, stuck broken or worn rings.</td>
<td>Check the oil level. Check the compression.</td>
</tr>
<tr>
<td>Black smoke – incomplete combustion caused by: Overload, choked air filter, inlet temperature too high, unsuitable fuel or water in fuel.</td>
<td>Check the fuel. Check for overload.</td>
</tr>
</tbody>
</table>

Engine starts, but stops after 10 up to 30 seconds

<table>
<thead>
<tr>
<th>CAUSE</th>
<th>SOLUTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protection system stops the engine; this can be caused by oil pressure failure, lack of cooling water (exhaust temperature alarm). Overload, loose wire or faulty alarm switch. Digital Diesel Control will help to indicate failure.</td>
<td>Refer to paragraph 2.5.5. and 3.2.2 for information on the alarm system. Bypassing the switches can help to confirm the failure.</td>
</tr>
</tbody>
</table>

Engine stops by itself

<table>
<thead>
<tr>
<th>CAUSE</th>
<th>SOLUTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overload or short circuit.</td>
<td>Switch off the consumers and test for short circuit.</td>
</tr>
<tr>
<td>Lack of fuel.</td>
<td>Check fuel supply system: fuel lines, pump, filter, valves, tank level, etc.</td>
</tr>
<tr>
<td>Oil pressure low. (oil pressure switch tripped).</td>
<td>Check oil level. Check engine’s oil pressure and have it repaired by WhisperPower.</td>
</tr>
<tr>
<td>Excessive heat in cooling system (thermo-switch tripped).</td>
<td>Check cooling water system flow: water pump, inlet water filter, coolant flow.</td>
</tr>
<tr>
<td>Lack of cooling water (exhaust switch tripped).</td>
<td></td>
</tr>
<tr>
<td>Impeller broken.</td>
<td></td>
</tr>
<tr>
<td>Cooling water blocked.</td>
<td></td>
</tr>
<tr>
<td>Water strainer blocked.</td>
<td></td>
</tr>
<tr>
<td>Air or water in the fuel.</td>
<td></td>
</tr>
<tr>
<td>Blocked air or fuel filter.</td>
<td></td>
</tr>
<tr>
<td>Loss of compression by wear out or damage.</td>
<td>Repair by WhisperPower service.</td>
</tr>
<tr>
<td>V-belt broken or loose.</td>
<td>Readjust or replace V-belt</td>
</tr>
</tbody>
</table>
Troubleshooting

Problem: Sooty, black exhaust.
- Thermostat faulty: Check thermostat and replace.
- Generator is being overloaded. Digital Diesel Control will indicate “HIGH CURRENT”: Check electrical load and switch off some consumers.
- Insufficient intake air: Check intake air paths and filter, clean and replace if necessary.
- Choked air filter: Replace filter.
- Fuel injector faulty: Replace injector.
- Valve clearance incorrect: Readjust valve clearance.
- Poor fuel quality: Use better quality diesel.
- Poor quality lubricating oil: Use better quality oil.
- Continuous running with very low load: Increase load and have the engine run for a few hours.

Problem: Loss of power
- Wrong measurement. Check if the load is measured correctly. Does the Amp meter show the correct value? When calculating the load by multiplying voltage and amps this should be done by using the exact values, taking into account the power factor of the consumers. When any doubt, measure the power directly with an appropriate instrument.
- Overfull oil sump: Bring the oil to the correct level.
- Choked fuel filter: Replace the fuel filter.
- Choked air filter: Check air inlet openings; clean air filter.
- Exhaust blocked: Check the exhaust system.
- Injector blocked: Have the injector checked.
- Loss of compression, sticking or damaged piston ring: Have the compression measured. Clean or replace the rings.
- Wear out of cylinder: Have the compression measured and have the engine overhauled.

Problem: Over-temperature
- Overload: Take away the overload.
- Low level of cooling oil or air in the cooling system: Fill up with liquid and release air bubbles. Check if there are air blocks in the system; refer to the installation manual.
- Water inlet system blocked: Check the cooling system thoroughly.
- Broken impeller: Replace and adjust the V-belt tension.
- Water strainer choked: Replace and adjust the V-belt tension.
- Heat exchanger choked: Replace and adjust the V-belt tension.
- Broken or slipping V-belt: Replace and adjust the V-belt tension.
- Faulty thermostat: Check the thermostat or replace.

5.2.3 Warnings
- Generator must be shut off immediately if:
 - Motor RPM suddenly rises or drops.
 - Unusual noise comes from generating set.
 - Exhaust gases suddenly colour dark.
 - Engine failure warning light is on.

5.2.4 Service address
If you cannot correct a problem with the aid of the malfunction table, contact your WhisperPower Service Centre or WhisperPower Netherlands, phone: +31 512 571 555. www.whisperpower.com.
5.3 SPECIAL PROCEDURES ALTERNATOR

5.3.1 Residual voltage check / excitation procedure
When residual magnetism disappears there is no residual voltage. Residual magnetism can disappear after the generating set being out of service for a long period or a short circuit. This can be solved by charging the capacitor (“flashing”) independently with a small 9 Volt battery. This can be done while the engine is stationary and the wiring is connected.

![Figure 19: Flashing](image)

If the generating set battery is used for flashing one must take care. A short circuit can cause heavy sparking, fire and injuries.

When flashing does not bring back voltage, the capacitor(s) should be renewed. When this does not help, the rotating rectifier diodes should be tested and a winding resistant test should be executed.

5.3.2 Testing rotary rectifier diodes
The diodes in the rotor can be checked with a multimeter. When the diode is faulty the alternator will not generate any voltage.

![Figure 20: Locating the diode](image)

The flexible lead connected to the diode should be disconnected at the terminal end, and the forward and reverse resistance checked. A healthy diode will indicate a very high resistance (infinity) in the reverse direction, and a low resistance in the forward direction. A faulty diode will give a full deflection reading in both directions with the test meter on the 10,000 ohms scale, or an infinity reading in both directions. Replace the diode.

5.3.3 Winding resistant values
If after establishing and correcting any fault on the capacitor and diode output is still low when separately excited, then the main rotor, stator and exciter stator winding resistance should be checked as the fault must be in one of these windings. The respective leads must be disconnected before taking the readings.

Resistance values should be within 10% of the values given in the table below:

<table>
<thead>
<tr>
<th>M-SQ6</th>
<th>Resistance 50Hz-230v</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Resistance both main stator windings in series</td>
<td>0.77 Ohm</td>
</tr>
<tr>
<td>• Resistance both rotor windings</td>
<td>2.0 Ohm</td>
</tr>
<tr>
<td>• Resistance exciter stator winding</td>
<td>1.91 Ohm</td>
</tr>
</tbody>
</table>

5.3.4 Meggering
One can try to measure resistance between the housing and the windings with a multimeter which should read infinity. When readings are infinity but a fault is suspected one can do a high voltage resistance test (MEGGERING)

This procedure should be carried out by an expert.

5.4 SPECIAL PROCEDURES ENGINE

5.4.1 Setting the RPM
RPM is set by the manufacturer and should not need readjustment! When adjustments are necessary this can only be done with the help of an interface to a computer and special software to get access to the microprocessor.

If readjustment of the RPM is necessary, please contact your WhisperPower Service Centre for advice.

5.4.2 Adjusting valve clearance and retightening the cylinder head bolts.
Both procedures have to be carried out with a cold engine. When both procedures are carried out be sure to retighten the cylinder head bolts before adjusting the valve clearance. When retightening the cylinder head bolts, drain the coolant by removing the drain plug (ref. to fig. 3 to 6).

Loosen the bolts slightly, remove the rocker assembly (the rocker arms, shaft, and stays) and then retighten the bolts to the specified torque in the numerical order illustrated (ref. to fig. 21).
Tightening torque:
M10 bolt 75-85 Nm
M8 bolt 20-30 Nm
Rocker stay tightening torque:
M8 bolt 15-22 Nm

The clearance of both (intake and exhaust) valves should be 0.25 mm in cold condition. Set the piston of the first cylinder to be adjusted to top dead centre (T.D.C.) of compression stroke.

The T.D.C. of compression stroke can be found by aligning the T.D.C. mark (notch) on the crankshaft pulley with the mark on the gear case (ref. to fig. 22).

First align the T.D.C. mark for the No. 1 cylinder. Confirm that the valves do not move up or down when the crankshaft is turned about 20 degrees in normal and reverse direction of rotation.

If the rocker arms move piston no.1 is on the T.D.C. of the intake or exhaust stroke. In such case turn the crankshaft 360° in the direction of engine rotation again. No. 1 piston is now at T.D.C. of the compression stroke.

After adjusting the valves of cylinder 1 adjust the valve clearance of the remaining cylinders in firing order 1 – 3 – 2. Turn the crankshaft 240 degrees clockwise from the T.D.C of cylinder 1 to the T.D.C of cylinder 3. Adjusts the valves of cylinder 3 and turn the crankshaft further clockwise to the T.D.C of cylinder 2.

5.4.3 Measuring exhaust backpressure
The exhaust system must be of adequate size -1 5/8'/ 40 mm - and maximal length (refer to installation manual). When any doubt; backpressure has to be measured. An easy way to measure for back-pressure is to use a water column.

A water column can be made visible in a plastic tube along a yardstick and fitting the end to a hose connection to fit in the adaptor on the injection bend after removing the exhaust temperature switch.

The bend A hanging down should not be too short helping to damp the pulsating effect of the gas discharge that is characteristic for a one cylinder engine. The water column should be no more than 27 inches (69 cm.) of water (1 PSI - 0,07 bar)
5.4.4 Disassembling instructions

It could be necessary to disassemble the generating set for repair or checks. Following instructions will help:

1. The design of the M-SQ6 makes it possible to do most repairs on the spot. The heat exchanger is accessible and can be removed. The connections of the alternator are very accessible as well.

2. The sound shield canopy can be disassembled according to exploded view below (figure 24).

3. To take the generating set out of the canopy all hose and cable connections have to be taken off. The set is fixed to its base by four rubber mountings and can be loosened by removing the four nuts from the bolts of these mountings. The easiest way to get the generator out of its capsule is by lifting the set with the aid of the lifting eyes.

4. Reassembling the generating set one should take care of alignment, cleaning the surfaces between engine and alternator and tighten the bolts crosswise and gradually.

5. Test the generating set first outside its capsule and check very carefully for leakages before putting it back in its enclosure.

Figure 24: Exploded view sound shield M-SQ6
6 SPARE PARTS LIST

A complete parts manual in English is available as an option number: number: 40200182 (***)
A work shop manual in English is available as an option number: 40200171 (***)

We recommend the following spares for service and maintenance.

- **Kit A**: parts for regular maintenance parts marked (*)

- **Kit B**: parts for maintenance + spare parts: all parts marked (*)+(**)

- **Kit C**: parts for "world travellers" all parts marked (*)+(**)+(***)

<table>
<thead>
<tr>
<th>ARTICLE NO</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>40209030</td>
<td>Fuel filter (*)</td>
</tr>
<tr>
<td>50201060</td>
<td>Fuel lift pump (***</td>
</tr>
<tr>
<td>50203120</td>
<td>V-belt (*)</td>
</tr>
<tr>
<td>40203121</td>
<td>Oil filter (*)</td>
</tr>
<tr>
<td>40201470</td>
<td>Raw water pump assembly (*** (refer to fig. 25)</td>
</tr>
<tr>
<td>40209011</td>
<td>Impeller (50209013) and O-ring (40209012) (*)</td>
</tr>
<tr>
<td>40201401</td>
<td>Pump cover</td>
</tr>
<tr>
<td>50209018</td>
<td>Cover screws (**) (6 pcs.)</td>
</tr>
<tr>
<td>40201471</td>
<td>Pump repair kit A consisting of: 56mm O-ring (50201814) 2 bearings</td>
</tr>
<tr>
<td></td>
<td>(40200914), shaft (40200921), large clip (40409016), V-ring (40409018),</td>
</tr>
<tr>
<td></td>
<td>seal (40409015), washer (40409017), small clip (40409019), impeller back</td>
</tr>
<tr>
<td></td>
<td>plate (40209023)</td>
</tr>
<tr>
<td>40201472</td>
<td>Pump repair kit B (**) (same as repair kit A excluding the shaft (40200921)</td>
</tr>
<tr>
<td></td>
<td>and O-ring (50201814))</td>
</tr>
<tr>
<td>50201721</td>
<td>Heat exchanger including fittings (***</td>
</tr>
<tr>
<td>50201722</td>
<td>Water hoses with clamps (**)</td>
</tr>
<tr>
<td>50209132</td>
<td>Capacitor xx micro-farad, 2 pcs (xx = specify value when ordering)</td>
</tr>
<tr>
<td>50201890</td>
<td>Rotary diode (**)</td>
</tr>
<tr>
<td>50201887</td>
<td>Alternator bearing including O-ring (**)</td>
</tr>
<tr>
<td>50209140</td>
<td>Voltage regulator (optional)</td>
</tr>
<tr>
<td>40209161</td>
<td>Local control panel (***</td>
</tr>
<tr>
<td>50209200</td>
<td>Digital Diesel Control Unit (***</td>
</tr>
<tr>
<td>50212170</td>
<td>Fuses 10 Amps(*)</td>
</tr>
<tr>
<td>50212154</td>
<td>Fuses 3 Amps (*)</td>
</tr>
<tr>
<td>50201886</td>
<td>Wiring loom complete (***</td>
</tr>
<tr>
<td>40209102</td>
<td>Digital Diesel Remote control panel (***</td>
</tr>
<tr>
<td>130010915</td>
<td>Cable remote control, 15 m, including connectors</td>
</tr>
<tr>
<td>50204033</td>
<td>Overhaul gasket kit / Seal kit (***</td>
</tr>
<tr>
<td>50204030</td>
<td>Cylinder head gasket kit</td>
</tr>
<tr>
<td>50203040</td>
<td>Glow plug, 3pcs (**)</td>
</tr>
<tr>
<td>50203050</td>
<td>Nozzle injector, 3pcs (**)</td>
</tr>
<tr>
<td>50204160</td>
<td>Fuel pump (high pressure) complete (***</td>
</tr>
<tr>
<td>50203045</td>
<td>Thermostat (**)</td>
</tr>
<tr>
<td>50203038</td>
<td>Thermostat gasket (**)</td>
</tr>
<tr>
<td>50204037</td>
<td>Rocker cover gasket (**)</td>
</tr>
</tbody>
</table>

More extensive parts list on the internet: whisperpower.com. (fast moving parts)
SPARE PARTS LIST

EN / M-SQ6 / June 2016

<table>
<thead>
<tr>
<th>Item</th>
<th>Part no.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>40201414</td>
<td>Pump body</td>
</tr>
<tr>
<td>2</td>
<td>40200914</td>
<td>Bearing</td>
</tr>
<tr>
<td>3</td>
<td>40200921</td>
<td>Shaft</td>
</tr>
<tr>
<td>4</td>
<td>40409016</td>
<td>Large clip</td>
</tr>
<tr>
<td>5</td>
<td>40409018</td>
<td>V-ring</td>
</tr>
<tr>
<td>6</td>
<td>40409015</td>
<td>Seal</td>
</tr>
<tr>
<td>7</td>
<td>40409017</td>
<td>Washer</td>
</tr>
<tr>
<td>8</td>
<td>40409019</td>
<td>Small clip</td>
</tr>
<tr>
<td>9</td>
<td>40209023</td>
<td>Impeller back plate</td>
</tr>
<tr>
<td>10</td>
<td>50209013</td>
<td>Impeller</td>
</tr>
<tr>
<td>11</td>
<td>40209012</td>
<td>O-ring</td>
</tr>
<tr>
<td>12</td>
<td>40201401</td>
<td>Pump cover</td>
</tr>
<tr>
<td>13</td>
<td>50209018</td>
<td>Screws</td>
</tr>
<tr>
<td>0</td>
<td>50201814</td>
<td>(not shown) 56mm O-ring between engine and pump</td>
</tr>
</tbody>
</table>

Figure 25: Water pump
MAINTENANCE LOG

<table>
<thead>
<tr>
<th>first service after 50 hours:</th>
<th>hour counter:</th>
<th>remarks:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>next service (every 150 hours):</th>
<th>hour counter:</th>
<th>remarks:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>